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Abstract
The spectral correlation of a chaotic system with spin 1/2 is universally
described by the GSE (Gaussian symplectic ensemble) of random matrices
in the semiclassical limit. In semiclassical theory, the spectral form factor is
expressed in terms of the periodic orbits and the spin state is simulated by
the uniform distribution on a sphere. In this paper, instead of the uniform
distribution, we introduce Brownian motion on a sphere to yield the parametric
motion of the energy levels. As a result, the small time expansion of the form
factor is obtained and found to be in agreement with the prediction of parametric
random matrices in the transition within the GSE universality class. Moreover,
by starting the Brownian motion from a point distribution on the sphere, we
gradually increase the effect of the spin and calculate the form factor describing
the transition from the Gaussian orthogonal ensemble class to the GSE class.

PACS numbers: 05.45.Mt, 05.40.−a

1. Introduction

The universal spectral correlation is one of the most outstanding features of quantum systems
when the underlying classical dynamics is chaotic [1]. It is known that there are universality
classes depending on the symmetry of the systems. For example, if time reversal invariance
is broken, the corresponding spectral correlation is reproduced by the GUE (Gaussian unitary
ensemble) of random matrices. On the other hand, the spectral correlation of the systems with
time reversal invariance depends on the spin. If the system is spinless or has an integer spin,
the GOE (Gaussian orthogonal ensemble) gives a precise prediction, while the GSE (Gaussian
symplectic ensemble) applies to a system with a half odd spin.

In order to explain the universal behaviour from the underlying chaotic dynamics, much
effort has been paid to establish a semiclassical theory of spectral correlations. The spectral
form factor K(τ) (the Fourier transform of the spectral correlation function) is one of the
most typical quantities of interest. Berry first succeeded in evaluating the leading term in the
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semiclassical τ expansion of the spectral form factor [2]. Then Sieber and Richter specified
the classical orbit pairs which contribute to the second-order term [3]. More recently Heusler
et al and Müller et al extended Sieber and Richter’s work and calculate the full form of K(τ)

in agreement with the prediction of random matrices [4–8].
In addition to each of the universality classes, the transitions within and among them are

also of interest. The transitions are described by the spectral correlations depending on the
transition parameters. It is conjectured that such parametric correlations are also reproduced
by parametric extensions of random matrices [9, 10]. For the crossover from the GOE class
to the GUE class, Saito and Nagao invented a scheme to incorporate the transition parameters
into the semiclassical expansion of K(τ) [11]. Similar schemes can also be applied to the
transitions within the GUE and GOE classes [12, 13]. The agreements with parametric random
matrices were in all cases confirmed.

In this paper, the parametric transition within the GSE symmetry class is treated. For
that purpose, we shall study the spectral correlation of a chaotic system with spin 1/2 by
employing the strength of the effective field applied to the spin as the parameter. In order to
simulate the spin dynamics, Brownian motion on the surface of a sphere is introduced. Using
semiclassical periodic orbit theory, we evaluate the τ expansion of the spectral form factor up
to the third order, so that the agreement with random matrix theory is confirmed. Moreover,
we study the crossover between a spinless system and a system with spin 1/2. We suppose
that the Brownian motion starts from a point distribution and that a diffusion on the sphere
is caused by the increase of the coupling to the effective field. As a result, the semiclassical
method yields the τ expansion of the form factor up to the second order.

The organization of this paper is as follows. In section 2, semiclassical theory of a
chaotic system with spin 1/2 is developed. Assuming that the spin is coupled to a stochastic
field, we explain how Brownian motion on a sphere arises. Then the leading term in the
τ expansion of the form factor is evaluated by using Berry’s diagonal approximation. In
section 3, a diagrammatic method is introduced to calculate the higher order terms in the τ

expansion. In section 4, the prediction of random matrix theory is presented and compared
with the semiclassical result. In section 5, a similar semiclassical analysis is carried out for
the crossover from a spinless system to a system with spin 1/2. The last section is devoted to
a brief summary.

2. Periodic orbit theory for a chaotic system with spin 1/2

Let us consider the energy level statistics of a bounded quantum system with f degrees
of freedom. Each phase space point is specified by a vector x = (q, p), where f -
dimensional vectors q and p give the position and momentum, respectively. It is assumed
that the corresponding classical dynamics is chaotic (homegeneously hyperbolic and ergodic).
Moreover we suppose that the system has a spin with a fixed quantum number S. The strength
of the interaction between the spin and effective field is characterized by a parameter η.

Let us denote by E the energy of the system. Then, in the semiclassical limit h̄ → 0, the
energy level density ρ(E; η) can be written in a decomposed form

ρ(E; η) ∼ ρav(E) + ρosc(E; η). (2.1)

Here ρav(E) is the local average of the level density, while ρosc(E; η) gives the fluctuation
(oscillation) around the local average.
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The local average of the level density is proportional to the number of Planck cells inside
the energy shell:

ρav(E) = (2S + 1)
�(E)

(2πh̄)f
, (2.2)

where the phase-space volume with the energy between E and E + �E is �(E)�E. The
effective field is assumed to be so weak that ρav(E) does not depend on the parameter η.

On the other hand, in order to calculate the fluctuation part ρosc(E; η), we need to care
about the time evolution of the spin. The spin state is described by a spinor with 2S + 1
elements and the spin evolution operator �̂ is represented by a (2S + 1)× (2S + 1) matrix. We
denote such a representation matrix evaluated along the periodic orbit γ by �γ (η). Then, in
the leading order of the semiclassical approximation, the fluctuation part of the level density
is written as [6, 14, 15]

ρosc(E; η) = 1

πh̄
Re

∑
γ

(tr �γ (η))Aγ eiSγ (E)/h̄. (2.3)

Here Sγ is the classical action for the orbital motion, Aγ is the stability amplitude (including
the Maslov phase) and tr �γ (η) is the sum of the diagonal elements of �γ (η).

Now we define the scaled parametric correlation function of the energy levels as

R(s; η, η′) =
〈

ρ
(
E + s

2ρav(E)
; η

)
ρ
(
E − s

2ρav(E)
; η′)

ρav(E)2

〉
− 1

∼
〈

ρosc
(
E + s

2ρav(E)
; η

)
ρosc

(
E − s

2ρav(E)
; η′)

ρav(E)2

〉
. (2.4)

Here we introduced averages depicted by the angular brackets 〈·〉 over windows of the centre
energy E and the scaled energy difference s. The form factor, namely the Fourier transform
of R(s; η, η′), is then written as

K(τ ; η, η′) =
∫ ∞

−∞
ds ei2πτsR(s; η, η′)

∼
〈∫

dε eiετTH /h̄
ρosc

(
E + ε

2 ; η
)
ρosc

(
E − ε

2 ; η′)
ρav(E)

〉
. (2.5)

Here the angular brackets mean averages over windows of the centre energy E and the time
variable τ . Note that τ is measured in units of the Heisenberg time

TH = 2πh̄ρav(E) = (2S + 1)
�(E)

(2πh̄)f −1
. (2.6)

It follows from (2.3) and (2.5) that the form factor is expressed as a double sum over periodic
orbits

K(τ ; η, η′) ∼ 1

T 2
H

〈∑
γ,γ ′

(tr �γ (η))(tr �γ ′(η′))∗Aγ A∗
γ ′ ei(Sγ −Sγ ′ )/h̄δ

(
τ − Tγ + Tγ ′

2TH

)〉
, (2.7)

where an asterisk stands for a complex conjugate. The periods of the periodic orbit γ and its
partner γ ′ are denoted by Tγ and Tγ ′ , respectively.

In principle, the spin evolution matrix �γ (η) can be calculated from a deterministic
equation of motion, if the Hamiltonian of the spin is explicitly known. However, here we
take a simplified strategy based on an assumption that the spin evolution parameters undergo
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Brownian motion on the surface of a sphere [17]. The Brownian motion arises when the spin
dynamics is determined by a stochastic Hamiltonian

Ĥ = η(h · Ŝ), (2.8)

where η is an interaction-strength parameter and Ŝ is the spin operator. We assume that the
components of the effective field

h = (hx(t), hy(t), hz(t)) (2.9)

can be replaced by isotropic Gaussian white noises: denoting the average over the noises by
the brackets 〈〈·〉〉, we find the correlation

〈〈hj (t)hl(t
′)〉〉 = 0, j �= l,

〈〈hj (t)hj (t
′)〉〉 = 2Dδ(t − t ′)

(2.10)

for j, l = x, y, z. Here isotropy implies that the diffusion constant D does not depend on j .
The time evolution of the spin is described by a (2S + 1) × (2S + 1) matrix �(t) which

satisfies the Schrödinger equation

ih̄
∂

∂t
�(t) = H�(t), (2.11)

where H is the matrix representation of the Hamiltonian Ĥ. Note that �(t) can be expressed
as

�(t) = exp(iφ(t)Sz/h̄) exp(iθ(t)Sx/h̄) exp(iψ(t)Sz/h̄), (2.12)

where Sx and Sz are (2S + 1) × (2S + 1) matrices representing the x and z components of the
spin operator Ŝ. Thus three Euler angles ψ , θ and φ describe the spin evolution. Let us denote
by χ(T ) a segment (with the duration T ) of the periodic orbit γ . When T coincides with the
period, χ(T ) is equated with γ . Along such a segment χ(T ), the spin evolution matrix �χ(T )

is evaluated as

�χ(T ) = �(T ). (2.13)

Putting (2.12) into (2.11), we obtain the Langevin equation for the Euler angles

φ̇/η = hx sin φ cot θ + hy cos φ cot θ − hz,

θ̇/η = −hx cos φ + hy sin φ,

ψ̇/η = −hx sin φ/sin θ − hy cos φ/sin θ.

(2.14)

Then the Fokker–Planck equation

∂P

∂t
= η2DLSPP (2.15)

holds for the p.d.f. (probability distribution function) P(ψ, θ, φ) with the measure
sin θ dψ dθ dφ. Here

LSP = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

(
∂2

∂ψ2
+

∂2

∂φ2
− 2 cos θ

∂2

∂ψ∂φ

)
(2.16)

is the Laplace–Beltrami operator on the sphere.
Let us suppose that the Euler angles ψ , θ and φ are equal to ψ ′, θ ′ and φ′, respectively,

when the interaction-strength parameter η is zero. Then the solution of the Fokker–Planck
equation gives the conditional p.d.f. of the Euler angles

g(ψ, θ, φ; t |ψ ′, θ ′, φ′) =
∞∑

j=0

j∑
m=−j

j∑
n=−j

2j + 1

32π2
Dj

m,n(ψ, θ, φ)
{
Dj

m,n(ψ
′, θ ′, φ′)

}∗
e−j (j+1)η2Dt .

(2.17)
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Here D
j
m,n is Wigner’s D function [18]

Dj
m,n(ψ, θ, φ) = eimφdj

m,n(θ) einψ, (2.18)

where

dj
m,n(θ) =

√
(j + m)!(j − m)!

(j + n)!(j − n)!
cosm+n(θ/2) sinm−n(θ/2)P

(m−n,m+n)
j−m (cos θ) (2.19)

with the Jacobi polynomials P
(a,b)
k (x). Note that j is an integer or a half odd integer

(j = 0, 1/2, 1, 3/2, . . . and m, n = −j,−j + 1, . . . , j ).
Under the assumption described above, the factor (tr �γ (η))(tr �γ ′(0)) in (2.7) with

η′ = 0 can be replaced by the average 〈〈(tr �γ (η))(tr �γ ′(0))〉〉 over the Brownian motion.
Thus we can write the form factor as

K(τ ; η, 0) ∼ 1

T 2
H

〈∑
γ,γ ′

〈〈(tr �γ (η))(tr �γ ′(0))∗〉〉Aγ A∗
γ ′ ei(Sγ −Sγ ′ )/h̄δ

(
τ − Tγ + Tγ ′

2TH

)〉
.

(2.20)

We shall evaluate the τ expansion of this semiclassical form factor, focusing on the systems
with spin S = 1/2.

Let us calculate the leading term in the τ expansion by using Berry’s diagonal
approximation [2]. In Berry’s approximation, one first considers the contributions from
the pairs of identical periodic orbits (γ, γ ). The spin evolution matrix along γ with S = 1/2
is given by

�γ (η) = exp
(
φ

i

2
σz

)
exp

(
θ

i

2
σx

)
exp

(
ψ

i

2
σz

)
, (2.21)

where

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
(2.22)

are the Pauli matrices. It follows that

tr �γ (η) = 2 cos
θ

2
cos

{
1

2
(ψ + φ)

}
. (2.23)

The average of the factor (tr �γ (η))(tr �γ (0)) over the Brownian motion can be written as

〈〈(tr �γ (η))(tr �γ (0))〉〉

=
∫

dω dω′(tr �γ (η))(tr �γ (0))g(ψ, θ, φ; T |ψ ′, θ ′, φ′)p0(ψ
′, θ ′, φ′), (2.24)

where p0 is the p.d.f. of the Euler angles at η = 0. The integrals are defined as∫
dω =

∫ 4π

0
dψ

∫ π

0
dθ

∫ 4π

0
dφ sin θ,

∫
dω′ =

∫ 4π

0
dψ ′

∫ π

0
dθ ′

∫ 4π

0
dφ′ sin θ ′

(2.25)

and T = Tγ is the period of γ .
For the transition within the GSE universality class (the GSE to GSE transition), we

employ the uniform ‘initial distribution’

p0(ψ, θ, φ) = 1

32π2
, (2.26)
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since it yields the spectral form factor of the GSE class [6, 14–16]. The uniform distribution
at η = 0 implies that the spin is under the influence of additional interactions apart from the
interaction described by (2.8). Putting (2.26) into (2.24), we obtain

〈〈(tr �γ (η))(tr �γ (0))〉〉 = 1

32π2

∫
dω dω′(tr �γ (η))(tr �γ (0))g(ψ, θ, φ; T |ψ ′, θ ′, φ′)

= 1

32π2

∫
dω dω′{D1/2

1/2,1/2(ψ, θ, φ) + D
1/2
−1/2,−1/2(ψ, θ, φ)

}∗

× {
D

1/2
1/2,1/2(ψ

′, θ ′, φ′) + D
1/2
−1/2,−1/2(ψ

′, θ ′, φ′)
}
g(ψ, θ, φ; T |ψ ′, θ ′, φ′).

(2.27)

Therefore, using the definition (2.17) of g and the orthogonality relation∫
dω

{
Dj

m,n(ψ, θ, φ)
}∗

D
j ′
m′,n′(ψ, θ, φ) = 32π2

2j + 1
δj,j ′δm,m′δn,n′ , (2.28)

we can readily find

〈〈(tr �γ (η))(tr �γ (0))〉〉 = e−(3/4)aT (2.29)

with

a = η2D. (2.30)

Here the interaction-strength parameter η is scaled so that aT remains finite in the semiclassical
limit h̄ → 0. In order to take a step further, we need Hannay and Ozorio de Almeida (HOdA)’s
sum rule [19]

1

T 2
H

〈∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)〉
= τ, (2.31)

which results from the ergodicity of the system. Using this sum rule, we find the contribution
to the form factor as

K(γ,γ )(τ ; η, 0) = 1

T 2
H

〈∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)〉
〈〈(tr �γ (η))(tr �γ (0))〉〉

= τ e−(3/4)aT . (2.32)

The second contribution to Berry’s diagonal approximation comes from the pairs (γ, γ̄ ), where
a bar denotes time reversal. Noting

�γ̄ (η) = {�γ (η)}−1

=
(

0 1
−1 0

)
{�γ (η)}T

(
0 −1
1 0

)
, (2.33)

where {�γ (η)}T is the transpose of �γ (η), we find

tr �γ̄ (η) = tr �γ (η). (2.34)

Therefore we can similarly obtain a contribution

K(γ,γ̄ )(τ ; η, 0) = 1

T 2
H

〈∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)〉
〈〈(tr �γ (η))(tr �γ̄ (0))〉〉

= τ e−(3/4)aT . (2.35)

Thus the total sum of the contributions to the diagonal approximation is

Kdiag(τ ) = K(γ,γ )(τ ; η, 0) + K(γ,γ̄ )(τ ; η, 0) = 2τ e−(3/4)aT . (2.36)



Semiclassical approach to parametric spectral correlation with spin 1/2 12061

3. Off-diagonal contributions

We are now in a position to calculate the off-diagonal contributions, restricting ourselves to the
systems with two degrees of freedom (f = 2). Encounters of periodic orbits play the major
role in identifying the leading terms. An encounter is a set of orbit segments which come
close to each other in the phase space. Long periodic orbits have encounters of the order of the
Ehrenfest time TE . In the semiclassical limit h̄ → 0, TE logarithmically diverges. However,
as the period T is of the order of the Heisenberg time TH , which more rapidly diverges, TE

remains vanishingly small compared with the period. Therefore the periodic orbit mostly
goes along loops in the phase space and occasionally visit encounters. As the leading terms
are expected to result from the periodic orbit pairs (γ, γ ′) which are close to each other or
mutually almost time reversed, we can suppose that γ ′ is almost identical to γ or γ̄ on the
loops but differently connected in the encounters.

Let us consider such a periodic orbit pair α = (γ, γ ′) in the phase space. Within each
encounter, a Poincaré section P orthogonal to the orbit γ can be introduced. Suppose that
γ pierces P within the rth encounter. If lr segments of γ are contained in the rth encounter,
there are lr piercing points on P . The displacement δx between such points can be spanned
as δx = sês + uêu. Here pairwise normalized vectors ês and êu have directions along the
stable and unstable manifolds, respectively. Therefore, if one reference piercing point is
chosen as the origin, each of other piercing points is identified by a coordinate pair (s, u).
As a result, if γ has L loops and V encounters,

∑V
r=1(lr − 1) = L − V coordinate pairs

(sj , uj ), j = 1, 2, . . . , L − V are necessary to identify the piercing points of γ .
Let us denote by Tj the duration on the j th loop and by tr the duration of the rth encounter.

Then the total duration of the encounters is

tα ≡
V∑

r=1

lr tr (3.1)

and the period is

T =
L∑

j=1

Tj + tα. (3.2)

Ergodicity can be employed to estimate the number of encounters as [5–7, 11]∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1Qα, (3.3)

where the integration measures are given by

du =
L−V∏
j=1

duj , ds =
L−V∏
j=1

dsj (3.4)

and

Qα = T

Nα

∏V
r=1 tr�L−V

. (3.5)

Here Nα is a combinatorial factor chosen such that overcountings are avoided.
Now the contribution to the form factor from the orbit pair α = (γ, γ ′) and its counterpart

(γ, γ̄ ′) can be readily derived. Referring to (2.20) and (3.3) and taking account of (2.34), we
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L1L2 E1

Figure 1. The periodic orbit pair contributing to the second-order term.

find that such a contribution is

Kα(τ) = 2τ

∫
du ds

∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1

×Qα〈〈(tr �γ (η))(tr �γ ′(0))〉〉 ei�S/h̄, (3.6)

where the action difference �S ≡ Sγ − Sγ ′ is given by �S = ∑L−V
j=1 uj sj [5–7].

In order to obtain a semiclassical result, we need to expand Kα(τ) in tr ’s and extract
the terms in which all tr ’s mutually cancel. Since extra factors h̄ appear or rapid oscillations
take place in the limit h̄ → 0, the other terms should be neglected [5–7]. The off-diagonal
contribution to the semiclassical form factor is thus derived as

Koff(τ ) =
∑

α

2τ 2TH

Nα

(
2

TH

)L−V
∂V

∂t1∂t2 · · · ∂tV
�(t1, t2, . . . , tV )

∣∣∣∣
t1=t2=···=tV =0

, (3.7)

where

�(t1, t2, . . . , tV ) =
∫ T −tα

0
dT1

∫ T −tα−T1

0
dT2 · · ·

∫ T −tα−T1−T2−···−TL−2

0
dTL−1

×〈〈(tr �γ (η))(tr �γ ′(0))〉〉. (3.8)

3.1. Sieber–Richter term

In this and the next subsection we consider the τ expansion of the above formula (3.7).
Mathematica was used to assist the computations. Each term of (3.7) is of order τn with
n = L − V + 1. Let us first consider the second-order term (n = 2). The relevant pairs
α = (γ, γ ′) have two loops (L = 2) and one encounter (V = 1). Such periodic orbit pairs
were identified by Sieber and Richter and thus called SR (Sieber–Richter) pairs [3]. An SR
pair is schematically depicted in figure 1.

In figure 1, L1 and L2 are loops and E1 is an encounter. In the encounter, γ and γ ′ are
depicted by solid curves and dashed lines, respectively, and each arrow shows the direction of
the motion. We can symbolically write the periodic orbits as

γ = Ē1L2E1L1, γ ′ = Ē′
1L̄

′
2E

′
1L

′
1, (3.9)

so that the spin evolution matrices are

�γ = (
�E1

)−1
�L2�E1�L1 , �γ ′ = (

�E′
1

)−1(
�L′

2

)−1
�E′

1
�L′

1
. (3.10)

A spin evolution matrix �χ along a segment χ of a periodic orbit is given by (2.13) and can
be expressed as

�χ = exp
(
φχ

i

2
σz

)
exp

(
θχ

i

2
σx

)
exp

(
ψχ

i

2
σz

)
(3.11)

in terms of a set of the Euler angles ωχ = (ψχ, θχ , φχ). The Pauli matrices σx and σz are
defined in (2.22). The corresponding integral over the Euler angles is defined as∫

dωχ =
∫ 4π

0
dψχ

∫ π

0
dθχ

∫ 4π

0
dφχ sin θχ . (3.12)
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Moreover we denote the durations of L1, L2 and E1 by T1, T2 and t1, respectively. Using the
above notations, we evaluate the average of (tr �γ (η))(tr �γ ′(0)) as

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)3

∫
dωL1 dωL2 dωE1

∫
dωL′

1
dωL′

2
dωE′

1

× tr
((

�E1

)−1
�L2�E1�L1

)
tr
((

�E′
1

)−1(
�L′

2

)−1
�E′

1
�L′

1

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T − T1 − 2t1

∣∣ωL′
2

)
g
(
ωE1; t1

∣∣ωE′
1

)
= 1

4
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1), (3.13)

so that

�(t1) = T − 2t1

4
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1). (3.14)

Due to the equivalence of the segments E1 and Ē1, we need to choose the combinatorial factor
Nα as NSR = 2 [4]. Consequently we find the contribution from the SR pairs to the form
factor as

KSR(τ ) = 4τ 2

NSR

∂

∂t1
�(t1)

∣∣∣∣
t1=0

= 2τ 2 e−(3/4)aT

(
1 +

3

4
aT

)
. (3.15)

3.2. Third-order term

Next we consider the third-order term (n = L − V + 1 = 3). It is known that the periodic
orbit pairs contributing to the third-order term are classified into five types: aas, api, ppi, ac
and pc [4]. These five types are depicted in figure 2.

As is seen from figure 2, each of aas, api and ppi orbit pairs has four loops (L = 4) and
two encounters (V = 2). The durations of the loops Lj (j = 1, 2, 3, 4) and the encounters
El (l = 1, 2) are denoted by Tj and tl , respectively. The combinatorial factors Nα are known
to be given by Naas = 2, Napi = 2 and Nppi = 4 [4].

On the other hand, each of ac and pc orbit pairs has three loops (L = 3) and one encounter
(V = 1). The times elapsed on the loops Lj (j = 1, 2, 3) and on the encounter E1 are denoted
by Tj and t1, respectively. The combinatorial factors Nα are Nac = 1 and Npc = 3 [4].

In the following, we calculate the contribution to the form factor Kα(τ) from each of the
five types: α = aas, api, ppi, ac and pc.

(1) aas orbit pairs (Naas = 2)

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)6

∫
dωL1 dωL2 dωL3 dωL4 dωE1 dωE2

×
∫

dωL′
1

dωL′
2

dωL′
3

dωL′
4

dωE′
1

dωE′
2

× tr
(
�E1�L2�E2�L3

(
�E2

)−1
�L4

(
�E1

)−1
�L1

)
× tr

(
�E′

1

(
�L′

4

)−1
�E′

2
�L′

3

(
�E′

2

)−1(
�L′

2

)−1(
�E′

1

)−1
�L′

1

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T2

∣∣ωL′
2

)
g
(
ωL3; T3

∣∣ωL′
3

)
× g

(
ωL4; T − 2t1 − 2t2 − T1 − T2 − T3|ωL′

4

)
× g

(
ωE1; t1|ωE′

1

)
g
(
ωE2; t2|ωE′

2

)
= 1

16
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1)(e(3/2)at2 − 3 e−(1/2)at2). (3.16)
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EL1 L31 E2L2

L4

L3 L1

L2L4
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E2
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L3

L2

L3

L1

L1

L2

L3

aas

api
ppi

cpca

E1

E1

Figure 2. The periodic orbit pairs contributing to the third-order term.

Therefore

�(t1, t2) = (T − 2t1 − 2t2)
3

96
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1)(e(3/2)at2 − 3 e−(1/2)at2),

(3.17)

so that

Kaas(τ ) = 8τ 2

NaasTH

∂2

∂t1∂t2
�(t1, t2)

∣∣∣∣
t1=t2=0

= 4τ 3 e−(3/4)aT

{
1 +

3

4
aT +

3

32
(aT )2

}
. (3.18)

(2) api orbit pairs (Napi = 2)

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)6

∫
dωL1 dωL2 dωL3 dωL4 dωE1 dωE2

×
∫

dωL′
1

dωL′
2

dωL′
3

dωL′
4

dωE′
1

dωE′
2
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× tr
(
�E1�L2�E2�L3�E1�L4

(
�E2

)−1
�L1

)
× tr

(
�E′

1
�L′

2
�E′

2

(
�L′

4

)−1(
�E′

1

)−1(
�L′

1

)−1
�E′

2
�L′

3

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T2

∣∣ωL′
2

)
g
(
ωL3; T3

∣∣ωL′
3

)
× g

(
ωL4; T − 2t1 − 2t2 − T1 − T2 − T3

∣∣ωL′
4

)
× g

(
ωE1; t1

∣∣ωE′
1

)
g
(
ωE2; t2

∣∣ωE′
2

)
= 1

16
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1)(e(3/2)at2 − 3 e−(1/2)at2). (3.19)

It follows that

Kapi(τ ) = 4τ 3 e−(3/4)aT
{
1 + 3

4aT + 3
32 (aT )2

}
. (3.20)

(3) ppi orbit pairs (Nppi = 4)

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)6

∫
dωL1 dωL2 dωL3 dωL4 dωE1 dωE2

×
∫

dωL′
1

dωL′
2

dωL′
3

dωL′
4

dωE′
1

dωE′
2

× tr
(
�E1�L2�E2�L3�E1�L4�E2�L1

)
× tr

(
�E′

1
�L′

2
�E′

2
�L′

1
�E′

1
�L′

4
�E′

2
�L′

3

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T2

∣∣ωL′
2

)
g
(
ωL3; T3

∣∣ωL′
3

)
× g

(
ωL4; T − 2t1 − 2t2 − T1 − T2 − T3

∣∣ωL′
4

)
× g

(
ωE1; t1

∣∣ωE′
1

)
g
(
ωE2; t2

∣∣ωE′
2

)
= 1

16
e−(3/4)aT (e(3/2)at1 − 3 e−(1/2)at1)(e(3/2)at2 − 3 e−(1/2)at2). (3.21)

It follows that

Kppi(τ ) = 2τ 3 e−(3/4)aT
{
1 + 3

4aT + 3
32 (aT )2

}
. (3.22)

(4) ac orbit pairs (Nac = 1)

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)4

∫
dωL1 dωL2 dωL3 dωE1

∫
dωL′

1
dωL′

2
dωL′

3
dωE′

1

× tr
(
�E1�L1

(
�E1

)−1
�L2�E1�L3

)
× tr

(
�E′

1

(
�L′

1

)−1(
�E′

1

)−1(
�L′

2

)−1
�E′

1
�L′

3

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T2

∣∣ωL′
2

)
g
(
ωL3; T − 3t1 − T1 − T2

∣∣ωL′
3

)
× g

(
ωE1; t1

∣∣ωE′
1

)
= 1

4
e−(3/4)aT (2 e−(3/2)at1 − e(3/2)at1). (3.23)

Therefore

�(t1) = (T − 3t1)
2

8
e−(3/4)aT (2 e−(3/2)at1 − e(3/2)at1), (3.24)

so that

Kac(τ ) = 8τ 2

NacTH

∂

∂t1
�(t1)

∣∣∣∣
t1=0

= −6τ 3 e−(3/4)aT

(
1 +

3

4
aT

)
. (3.25)
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(5) pc orbit pairs (Npc = 3)

〈〈(tr �γ (η))(tr �γ ′(0))〉〉 = 1

(32π2)4

∫
dωL1 dωL2 dωL3 dωE1

∫
dωL′

1
dωL′

2
dωL′

3
dωE′

1

× tr
(
�E1�L1�E1�L2�E1�L3

)
tr
(
�E′

1
�L′

1
�E′

1
�L′

3
�E′

1
�L′

2

)
× g

(
ωL1; T1

∣∣ωL′
1

)
g
(
ωL2; T2

∣∣ωL′
2

)
g
(
ωL3; T − 3t1 − T1 − T2

∣∣ωL′
3

)
× g

(
ωE1; t1

∣∣ωE′
1

)
= 1

4
e−(3/4)aT (2 e−(3/2)at1 − e(3/2)at1). (3.26)

It follows that

Kpc(τ ) = −2τ 3 e−(3/4)aT
(
1 + 3

4aT
)
. (3.27)

Putting the above results together, we obtain the third-order contribution to the form factor

K3rd(τ ) = Kaas(τ ) + Kapi(τ ) + Kppi(τ ) + Kac(τ ) + Kpc(τ )

= 2τ 3 e−(3/4)aT
{
1 + 3

4aT + 15
32 (aT )2}. (3.28)

Hence the semiclassical form factor up to the third order is calculated from (2.36), (3.15)
and (3.28) as

KSC(τ ) = Kdiag(τ ) + KSR(τ ) + K3rd(τ )

= 2τ e−(3/4)aT
[
1 +

(
1 + 3

4aT
)
τ +

{
1 + 3

4aT + 15
32 (aT )2

}
τ 2

]
. (3.29)

4. Parametric random matrix theory

Parametric random matrix theory was originally invented by Dyson [20]. The quantum
Hamiltonian of a time reversal invariant system with spin 1/2 is simulated by an N × N self-
dual real quaternion random matrix H. It is assumed to be a sum of a self-dual real quaternion
matrix H0 and a Gaussian random perturbation: the p.d.f. of H is given by

P(H ; σ |H0) dH ∝ exp

[
−2

Tr{(H − e−σ H0)
2}

1 − e−2σ

]
dH (4.1)

with

dH =
N∏

j=1

dHjj

N∏
j<l

3∏
k=0

dH
(k)
jl . (4.2)

Here H
(k)
jl is the kth component of the real quaternion Hjl . We are interested in the parametric

motion of the matrix H depending on the fictitious time parameter σ .
Let us write the eigenvalues of the self-dual real quaternion matrices H and H0 as

x1, x2, . . . , xN and y1, y2, . . . , yN , respectively. Dyson derived the Fokker–Planck equation

∂p

∂σ
=

N∑
j=1

∂

∂xj

(
∂W

∂xj

p +
1

4

∂p

∂xj

)
(4.3)

with

W = 1

2

N∑
j=1

(xj )
2 −

N∑
j<l

log|xj − xl| (4.4)

for the p.d.f. p of the eigenvalues of H.
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We denote by

G(x1, x2, . . . , xN ; σ |y1, y2, . . . , yN) (4.5)

the Green function solution of the Fokker–Planck equation (4.3). Namely, G with the measure∏N
j=1 dxj gives the p.d.f. of the eigenvalues of H at σ under the condition that xj = yj

(j = 1, 2, . . . , N) at σ = 0. The limit σ → ∞ of the Green function is given by the p.d.f. of
the GSE eigenvalues

G(x1, x2, . . . , xN ;∞|y1, y2, . . . , yN) = pGSE(x1, x2, . . . , xN), (4.6)

where

pGSE(x1, x2, . . . , xN) ∝ e−4W . (4.7)

Let us choose the initial matrix H0 as a GSE random matrix. Then the transition within
the GSE symmetry class (the GSE to GSE transition) is realized. We define the dynamical
(density–density) correlation function describing the correlation between the eigenvalues of
H and H0 as

κ(x; σ |y) = N2 I (x; σ |y)

I0
, (4.8)

where

I (x1; σ |y1) =
∫ ∞

−∞
dx2

∫ ∞

−∞
dx3 · · ·

∫ ∞

−∞
dxN

∫ ∞

−∞
dy2

∫ ∞

−∞
dy3 · · ·

∫ ∞

−∞
dyN

×G(x1, x2, . . . , xN ; σ |y1, y2, . . . , yN)pGSE(y1, y2, . . . , yN) (4.9)

and

I0 =
∫ ∞

−∞
dx

∫ ∞

−∞
dyI (x; σ |y). (4.10)

The asymptotic limit N → ∞ of the dynamical correlation function was evaluated by
the method of supersymmetry [21]. It can also be derived by using the properties of the Jack
symmetric polynomials [22]. Let us note that the asymptotic eigenvalue density at

√
2Nz

(−1 < z < 1) is given by ρ =
√

2N(1 − z2)/π . In terms of the new scaled variables c,X

and Y defined as

σ = c/(π2ρ2), x =
√

2Nz + (X/ρ), y =
√

2Nz + (Y/ρ), (4.11)

one obtains the asymptotic limit

κ(x; σ |y)

ρ2
− 1 ∼ ρ̄(ξ ; c) ≡ 1

2

∫ ∞

1
du

∫ 1

−1
dv1

∫ 1

−1
dv2

(u2 − 1)(u − v1v2)
2

{2uv1v2 − u2 − (v1)2 − (v2)2 + 1}2

× exp(−c{u2 + (v1)
2 + (v2)

2 − 2(v1)
2(v2)

2 − 1}) cos{2πξ(u − v1v2)}
(4.12)

with ξ = X − Y . The Fourier transform of the asymptotic limit

KRM(τ ) =
∫ ∞

−∞
dξ ei2πτξ ρ̄(ξ ; c) (4.13)

gives the definition of the form factor. It can be written as

KRM(τ ) = τ 2

2

∫ 1

1−τ

dv1

∫ 1

(1−τ)/v1

dv2

× (v1v2 + τ)2 − 1

{2(v1v2 + τ)v1v2 − (v1v2 + τ)2 − (v1)2 − (v2)2 + 1}2

× exp(−c{(v1v2 + τ)2 + (v1)
2 + (v2)

2 − 2(v1)
2(v2)

2 − 1}) (4.14)
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for 0 � τ � 1. In order to derive the τ expansion of KRM(τ ), we introduce new integration
variables s1 and s2 by

λ1 = 1 − τ

2
s1, λ1λ2 = 1 − τ

2
s2. (4.15)

Then we find

KRM(τ ) = τ

8

∫ 2

0
ds1

∫ 2

s1

ds2 exp
{
−2λ

(
1 − τ

2
s2

)
− λτ

}

× exp

{
λτ

(
s1 − τ

4 (s1)
2
)(−s1 + s2 + τ

4 (s1)
2 − τ

4 (s2)
2
)

(
1 − τ

2 s1
)2

}

×
(
1 − τ

2 s1
)3(

2 − τ
2 s2 + τ

)(
1 − s2

2

)
{(

s1 − τ
4 (s1)2

)(−s1 + s2 + τ
4 (s1)2 − τ

4 (s2)2
) − (

1 − τ
2 s1

)2}2 , (4.16)

where λ = cτ . Thus we can readily calculate the τ expansion (with fixed λ) from the Taylor
expansion of the integrand as

KRM(τ ) = τ

8
e−2λ

{
4 + (2 + 4λ)τ +

(
1 + 2λ +

10

3
λ2

)
τ 2 + · · ·

}
. (4.17)

In order to compare this result with the semiclassical formula, we need to take account
of the Kramers degeneracy, which means that all the eigenvalues have multiplicity two due to
time reversal symmetry. Inclusion of the degeneracy yields a modified form factor

K̃RM(τ ) = 2KRM(2τ)

= 2τ e−2λ
{
1 + (1 + 2λ)τ +

(
1 + 2λ + 10

3 λ2
)
τ 2 + · · · }. (4.18)

This is in agreement with the semiclassical formula (3.29) up to the third order with an
identification λ = (3/8)aT .

5. The GOE to GSE transition

If the spin evolution operator is represented by an identity matrix, the system is effectively
spinless and the resulting spectral correlation belongs to the GOE universality class. Therefore,
the crossover from the GOE class to the GSE class can be treated by introducing

p0(ψ, θ, φ) = δ(ψ)δ(cos θ − 1)δ(φ) (5.1)

as the ‘initial distribution’ instead of (2.26). In this section, we investigate the GOE to GSE
transition, focusing on the form factor K(τ, η, η), where η′ is equated with η.

As before, due to the relation (2.34), the contributions from the pairs (γ, γ ′) and (γ, γ̄ ′)
are equal. Therefore, in order to calculate the form factor in the diagonal approximation, it
suffices to treat the pairs (γ, γ ). The average over the Brownian motion can be evaluated as

〈〈(tr �γ (η))2〉〉 =
∫

dω dω′(tr �γ (η))2g(ψ, θ, φ; T |ψ ′, θ ′, φ′)p0(ψ
′, θ ′, φ′),

=
∫

dω(tr �γ (η))2g(ψ, θ, φ; T |0, 0, 0). (5.2)

Noting

(tr �γ (η))2 = D0
0,0(ψ, θ, φ) + D1

−1,−1(ψ, θ, φ) + D1
0,0(ψ, θ, φ) + D1

1,1(ψ, θ, φ) (5.3)
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and the orthogonality relation (2.28), we can readily find

〈〈(tr �γ (η))2〉〉 = 1 + 3 e−2aT . (5.4)

Then, using the HOdA sum rule (2.31), we find the contribution to the form factor

K(γ,γ )(τ ; η, η) = 1

T 2
H

〈∑
γ

|Aγ |2δ
(

τ − Tγ

TH

)〉
〈〈(tr �γ (η))2〉〉

= τ(1 + 3 e−2aT ), (5.5)

so that the diagonal term arising from the pairs (γ, γ ) and (γ, γ̄ ) is

Kdiag(τ ) = K(γ,γ )(τ ; η, η) + K(γ,γ̄ )(τ ; η, η) = 2τ(1 + 3 e−2aT ). (5.6)

Let us next consider the second-order term. As before, it can be evaluated from the
Sieber–Richter pair (γ, γ ′) in figure 1. We compute the average of (tr �γ (η))(tr �γ ′(η)) over
the Brownian motion as

〈〈(tr �γ (η))(tr �γ ′(η))〉〉 =
∫

dωL1 dωL2 dωE1

× tr
((

�E1

)−1
�L2�E1�L1

)
tr
((

�E1

)−1
(�L2)

−1�E1�L1

)
× g

(
ωL1; T1

∣∣0, 0, 0
)
g
(
ωL2; T − T1 − 2t1

∣∣0, 0, 0
)
g
(
ωE1; t1

∣∣0, 0, 0
)

= − 1

2
+

3

2
e−2aT +4at1 +

3

2
e−2aT +2aT1+4at1 +

3

2
e−2aT1 . (5.7)

Then we can evaluate the contribution to the form factor

KSR(τ ) = 4τ 2

NSR

∂

∂t1

{∫ T −2t1

0
dT1〈〈(tr �γ (η))(tr �γ ′(η))〉〉

}∣∣∣∣
t1=0

= 2τ 2{1 + (6aT − 9) e−2aT }. (5.8)

Thus we obtain the semiclassical form factor up to the second order

KSC(τ ) = Kdiag(τ ) + KSR(τ )

= 2τ(1 + 3 e−2aT ) + 2τ 2{1 + (6aT − 9) e−2aT }. (5.9)

A random matrix model of the GOE to GSE transition was already formulated in [23, 24].
However, as far as the authors know, an asymptotic formula to be compared with the above
result (5.9) has not been worked out. Therefore, it can be regarded as a conjecture for one of
the open problems in random matrix theory.

The corresponding random matrix model can be formulated by using Dyson’s p.d.f. (4.1).
Here we need to suppose that the initial matrix H0 is a GOE random matrix. Namely, the
matrix elements of H0 only have the 0th components and the p.d.f. of H0 is

PGOE(H0) dH0 ∝ e−(1/2) Tr(H0)
2

dH0 (5.10)

with

dH0 =
N∏

j=1

d(H0)jj

N∏
j<l

d(H0)jl . (5.11)

It is well known that the form factor of the GOE eigenvalues is expanded as

KGOE(τ ) = 2τ − 2τ 2 + · · · . (5.12)

Considering the Kramers degeneracy, one modifies it into

K̃GOE(τ ) = 2KGOE(2τ) = 8τ − 16τ 2 + · · · , (5.13)

which is in agreement with the corresponding case a = 0 of the semiclassical result (5.9).



12070 T Nagao and K Saito

6. Summary

In this paper, the parametric spectral correlation of a chaotic system with spin 1/2 was studied.
The parameter was chosen to be the strength of the effective field applied to the spin. Using
the semiclassical periodic orbit theory for the orbital motion and simulating the spin dynamics
by Brownian motion on a sphere, we evaluated the parameter-dependent spectral form factor
KSC(τ ). The τ expansion of KSC(τ ) was found to be in agreement with the prediction of
random matrix theory up to the third order. Moreover a crossover from a spinless system was
investigated and the τ expansion of the corresponding form factor was calculated up to the
second order.
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